Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription.

نویسندگان

  • Natalia Garmashova
  • Rodion Gorchakov
  • Elena Frolova
  • Ilya Frolov
چکیده

Replication of alphaviruses in vertebrate cells strongly affects cell physiology and ultimately leads to development of a cytopathic effect (CPE) and cell death. Sindbis virus (SIN) replication causes major changes in cellular macromolecular synthesis, in which the strong downregulation of transcription of cellular mRNAs and rRNAs plays a critical role. SIN nonstructural protein nsP2 was previously proposed as one of the main regulators of virus-host cell interactions, because point mutations in the carboxy-terminal part of nsP2 could make SIN and other alphaviruses and replicons less cytopathic and capable of persisting in some vertebrate cell lines. These mutants were incapable of inhibiting transcription and downregulating a viral stress-induced cell response. In the present work, we demonstrate that (i) SIN nsP2 is critically involved in CPE development, not only during the replication of SIN-specific RNAs, but also when this protein is expressed alone from different expression cassettes; (ii) the cytotoxic effect of SIN nsP2 appears to be at least partially determined by its ability to cause transcriptional shutoff; (iii) these functions of SIN nsP2 are determined by the integrity of the carboxy-terminal peptide of this protein located outside its helicase and protease domains, rather than by its protease activity; and (iv) the cytotoxic activity of SIN nsP2 depends on the presence of this protein in a free form, and alterations in P123 processing abolish the ability of nsP2 to cause CPE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Roles of nonstructural protein nsP2 and Alpha/Beta interferons in determining the outcome of Sindbis virus infection.

Alphaviruses productively infect a variety of vertebrate and insect cell lines. In vertebrate cells, Sindbis virus redirects cellular processes to meet the needs of virus propagation. At the same time, cells respond to virus replication by downregulating virus growth and preventing dissemination of the infection. The balance between these two mechanisms determines the outcome of infection at th...

متن کامل

Processing the nonstructural polyproteins of Sindbis virus: study of the kinetics in vivo by using monospecific antibodies.

Plasmids were constructed which contained a large portion of each of the four nonstructural genes of Sindbis virus fused to the N-terminal two-thirds of the trpE gene of Escherichia coli. The large quantity of fusion protein induced from cells containing these plasmids was subsequently used as an antigen to generate polyclonal antisera in rabbits. Each antiserum was specific for the correspondi...

متن کامل

Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans.

The processing of the Sindbis virus nonstructural polyprotein translated in vitro has been studied. When Sindbis virus genomic RNA was translated in a reticulocyte lysate, polyprotein P123 was cleaved efficiently to produce nsP1, nsP2, and nsP3. Inhibition of this processing by anti-nsP2 antibodies, but not by antibodies specific for nsP1, nsP3, or nsP4, suggested that the viral proteinase was ...

متن کامل

Role for conserved residues of sindbis virus nonstructural protein 2 methyltransferase-like domain in regulation of minus-strand synthesis and development of cytopathic infection.

The plus-strand RNA genome of Sindbis virus (SINV) encodes four nonstructural proteins (nsP1 to nsP4) that are involved in the replication of the viral RNA. The approximately 800-amino-acid nsP2 consists of an N-terminal domain with nucleoside triphosphatase and helicase activities and a C-terminal protease domain. Recently, the structure determined for Venezuelan equine encephalitis virus nsP2...

متن کامل

Sindbis virus proteins nsP1 and nsP2 contain homology to nonstructural proteins from several RNA plant viruses.

Although the genetic organization of tobacco mosaic virus (TMV) differs considerably from that of the tripartite viruses (alfalfa mosaic virus [AlMV] and brome mosaic virus [BMV]), all of these RNA plant viruses share three domains of homology among their nonstructural proteins. One such domain, common to the AlMV and BMV 2a proteins and the readthrough portion of TMV p183, is also homologous t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of virology

دوره 80 12  شماره 

صفحات  -

تاریخ انتشار 2006